Control of Stationary Behavior in Probabilistic Boolean Networks by Means of Structural Intervention
نویسندگان
چکیده
Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene regulatory networks. The dynamical behavior of PBNs, which are probabilistic generalizations of Boolean networks, can be studied using Markov chain theory. In particular, the steady-state or long-run behavior of PBNs may reflect the phenotype or functional state of the cell. Approaches to alter the steady-state behavior in a specific prescribed manner, in cases of aberrant cellular states, such as tumorigenesis, would be highly beneficial. This paper develops a methodology for altering the steady-state probabilities of certain states or sets of states with minimal modifications to the underlying rule-based structure. This approach is framed as an optimization problem that we propose to solve using genetic algorithms, which are well suited for capturing the underlying structure of PBNs and are able to locate the optimal solution in a highly efficient manner. Several computer simulation experiments support the proposed methodology.
منابع مشابه
Probabilistic Boolean Networks - The Modeling and Control of Gene Regulatory Networks
probabilistic boolean networks the modeling and control of probabilistic boolean networks the modeling and control of probabilistic boolean networks: the modeling and control probabilistic boolean networks society for industrial probabilistic boolean networks the modeling and control of probabilistic control of boolean networks with multiple from boolean to probabilistic boolean networks as mod...
متن کاملState reduction for network intervention in probabilistic Boolean networks
MOTIVATION A key goal of studying biological systems is to design therapeutic intervention strategies. Probabilistic Boolean networks (PBNs) constitute a mathematical model which enables modeling, predicting and intervening in their long-run behavior using Markov chain theory. The long-run dynamics of a PBN, as represented by its steady-state distribution (SSD), can guide the design of effectiv...
متن کاملOn the long-run sensitivity of probabilistic Boolean networks.
Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynami...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملA CoD-based reduction algorithm for designing stationary control policies on Boolean networks
MOTIVATION Gene regulatory networks serve as models from which to derive therapeutic intervention strategies, in particular, stationary control policies over time that shift the probability mass of the steady state distribution (SSD) away from states associated with undesirable phenotypes. Derivation of control policies is hindered by the high-dimensional state spaces associated with gene regul...
متن کامل